
Week 10 - Wednesday

 What did we talk about last time?
 Exam 2
 Before that:
 Review

 Before that:
 Binary trees
 Unions
 Time

Measuring programming progress by lines of code is
like measuring aircraft building progress by weight.

Bill Gates

 Many time functions need different structs that can hold
things

 One such struct is defined as follows:

struct timeval
{

time_t tv_sec; // Seconds since Epoch
suseconds_t tv_usec; // Extra microseconds

};

 The gettimeofday() function offers a way to get higher precision
timing data

 Its signature is:

 From the previous slide, timeval has a tv_secs member which is the
same as the return value from time()

 It also has a tv_usec member which gives microseconds (millionths of a
second)

 The timezone pointer tz is obsolete and should have NULL passed into
it

 Include sys/time.h (not the same as time.h) to use this function

int gettimeofday(struct timeval *tv, struct timezone *tz);

 What about printing out a human-readable version of the
time?

 ctime() takes a time_t value and returns a string giving
the day and time

 Alternatively, strftime() has a set of specifiers (similar to
printf()) that allow for complex ways to format the date
and time

printf(ctime(time(NULL)));
// Prints Wed Mar 20 11:42:34 2024

struct tm
{

int tm_sec; // Seconds (0-60)
int tm_min; // Minutes (0-59)
int tm_hour; // Hours (0-23)
int tm_mday; // Day of the month (1-31)
int tm_mon; // Month (0-11)
int tm_year; // Year since 1900
int tm_wday; // Day of the week (Sunday = 0)
int tm_yday; // Day in the year (0-365; 1 Jan = 0)
int tm_isdst; /* Daylight saving time flag
> 0: DST is in effect;
= 0: DST is not effect;
< 0: DST information not available */

};

 gmtime() and localtime() convert a time_t value to a struct that
contains "broken down" time
 gmtime() gives UTC time (used to be called Greenwich Mean Time)
 localtime() gives the local time, assuming it is set up correctly

 mktime() can convert from a broken down time back into time_t

time_t seconds = time(NULL);
struct tm* brokenDownTime = NULL;
brokenDownTime = localtime(&seconds);
if(brokenDownTime->tm_wday == 1)

printf("It's just another manic Monday.\n");

 How accurate is the microsecond part of
gettimeofday()?

 It depends on the accuracy of the software clock in your
system

 This clock measures time in units called jiffies
 A jiffy used to be 10 milliseconds (100 Hz)
 They raised the accuracy to 1 millisecond (1000 Hz)
 Now, it can be configured for your system to 10, 4 (the

default), 3.3333, and 1 milliseconds

 For optimization purposes, it can be useful to know how much
time a process spends running on the CPU

 This time is often broken down into
 User time: the amount of time your program spends executing its

own code
 System time: the amount of time spent in kernel mode executing

code for your program (memory allocation, page faults, file opening)

 You can time a program's complete execution by running it with
the time command
 It will give the real time taken, user time, and system time

 Let's say you've got a program called timewaster
 Run it like this:

 Output might be:

time ./timewaster

real 0m4.84s
user 0m1.030s
sys 0m3.43s

 Think of a file as a stream of bytes
 It is possible to read from the stream
 It is possible to write to the stream
 It is even possible to do both
 Central to the idea of a stream is also a file stream pointer,

which keeps track of where in the stream you are
 We have been redirecting stdin from and stdout to files,

but we can access them directly as well

 To open a file, call the fopen() function
 It returns a pointer to a FILE object
 Its first argument is the path to the file as a null-terminated

string
 Its second argument is another string that says how it's being

opened (for reading, writing, etc.)

FILE* file = fopen("data.txt", "r");

 The following are legal arguments for the second string

Argument Meaning

"r" Open for reading. The file must exist.

"w" Open for writing. If the file exists, all its contents will be erased.

"a" Open for appending. Write all data to the end of the file, preserving anything that is
already there.

"r+" Open a file for reading and writing, but it must exist.

"w+" Open a file for reading and writing, but if it exists, its contents will be erased.

"a+" Open a file for reading and writing, but all writing is done to the end of the file.

 Once you've got a file open, write to it using fprintf() the
same way you write to the screen with printf()

 The first argument is the file pointer
 The second is the format string
 The third and subsequent arguments are the values

FILE* file = fopen("output.dat", "w");
fprintf(file, "Yo! I got %d on it!\n", 5);

 Once you've got a file open, read from it using fscanf() the
same way you read from keyboard with scanf()

 The first argument is the file pointer
 The second is the format string
 The third and subsequent arguments are pointers to the

values you want to read into

FILE* file = fopen("input.dat", "r");
int value = 0;
fscanf(file, "%d", &value);

 When you're doing using a file, close the file pointer using the
fclose() function

 It's a good idea to close them as soon as you don't need them
anymore
 It takes up system resources
 You can only have a limited number of files open at once
 You can't always open a file in one program when it's open in another
 Data might not be written to a file unless you explicitly close it

FILE* file = fopen("input.dat", "r");
int value = 0;
fscanf(file, "%d", &value);
fclose(file);

 Write a program that prompts the user for an integer n and a
file name

 Open the file for writing
 Write the value n on the first line of the file
 Then, print n random numbers, each on its own line
 Close the file

 Write a program that reads the file generated in the previous
example and finds the average of the numbers

 Open the file for reading
 Read the value n so you know how many numbers to read
 Read the n random numbers
 Compute the average and print it out
 Close the file

 If you need to do character by character output, you can use
fputc()

 The first argument is the file pointer
 The second is the character to output
 putc() is an equivalent function

FILE* file = fopen("output.dat", "w");
for(int i = 0; i < 100; ++i)

fputc(file, '$');

 If you need to do character by character input, you can use fgetc()
 The argument is the file pointer
 It returns the character value or EOF if there's nothing left in the file
 getc() is an equivalent function

FILE* file = fopen("input.dat", "r");
int count = 0;

while(fgetc(file) != EOF)
++count;

printf("There are %d characters in the file\n", count);

 Users and groups
 Binary files
 Low-level file I/O

 Keep working on Project 5
 Read LPI Chapters 4 and 5

	COMP 2400
	Last time
	Questions?
	Project 5
	Quotes
	Back to Time
	Time structures
	gettimeofday()
	ctime()
	Broken down time structure
	gmtime(), localtime(), and mktime()
	Jiffies
	Process time
	The time command
	File I/O
	Files
	fopen()
	fopen() arguments
	fprintf()
	fscanf()
	Closing files
	Example 1
	Example 2
	fputc() and putc()
	fgetc() and getc()
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

